Genome-wide association study of asthma identifies RAD50-IL13 and HLA-DR/DQ regions

Xingnan Li, PhD,^a* Timothy D. Howard, PhD,^a* Siqun L. Zheng, MD,^a Tmirah Haselkorn, PhD,^b Stephen P. Peters, MD, PhD,^a Deborah A. Meyers, PhD,^a and Eugene R. Bleecker, MD^a Winston Salem, NC, and Sunnyvale, Calif

Background: Asthma is a heterogeneous disease that is caused by the interaction of genetic susceptibility with environmental influences. Genome-wide association studies (GWASs) represent a powerful approach to investigate the association of DNA variants with disease susceptibility. To date, few GWASs for asthma have been reported.

Objectives: A GWAS was performed on a population of patients with severe or difficult-to-treat asthma to identify genes that are involved in the pathogenesis of asthma.

Methods: A total of 292,443 single nucleotide polymorphisms (SNPs) were tested for association with asthma in 473 The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) cases and 1892 Illumina general population controls. Asthma-related quantitative traits (total serum IgE, FEV₁, forced vital capacity, and FEV₁/forced vital capacity) were also tested in identified candidate regions in 473 TENOR cases and 363 phenotyped controls without a history of asthma to analyze GWAS results further. Imputation was performed in identified candidate regions for analysis with denser SNP coverage.

Results: Multiple SNPs in the RAD50-IL13 region on chromosome 5q31.1 were associated with asthma: rs2244012 in intron 2 of *RAD50* (P = 3.04E-07). The HLA-DR/DQ region on chromosome 6p21.3 was also associated with asthma: rs1063355 in the 3' untranslated region of *HLA-DQB1* (P = 9.55E-06). Imputation identified several significant SNPs in the T_H2 locus control region 3' of *RAD50*. Imputation also identified a more significant SNP, rs3998159 (P = 1.45E-06), between *HLA-DQB1* and *HLA-DQA2*.

Conclusion: This GWAS confirmed the important role of T_{H2} cytokine and antigen presentation genes in asthma at a genomewide level and the importance of additional investigation of

these 2 regions to delineate their structural complexity and biologic function in the development of asthma. (J Allergy Clin Immunol 2010;125:328-35.)

Key words: Asthma, GWAS, RAD50, IL13, HLA-DQB1, TENOR

Asthma is a complex disease that is caused by the interaction of genetic susceptibility with environmental influences. Genome-wide linkage studies, candidate-gene association studies, and genome-wide association studies (GWASs) represent 3 major approaches to investigate the association between genetic variants and disease development.

Genome-wide linkage studies have consistently identified regions linked to asthma or asthma-related traits on chromosome 2q, 5q, 6p, 12q, and 13q.¹ The most highly replicated regions with obvious candidate genes are chromosome 5q31-33 (including IL5, IL13, IL4, CD14, and adrenergic β-2-receptor) and 6p21 (including lymphotoxin-α [or TNFB], TNF, major MHC-II, HLA-DQB1, and HLA-DRB1).² In addition, a recent metaanalysis of genome-wide linkage studies of asthma, bronchial hyperresponsiveness, positive allergen skin prick test, and total IgE identified overlapping regions for multiple phenotypes on chromosomes 5q and 6p as well as 3p and 7p.³ Unfortunately, genome-wide linkage studies can only identify genes with relative strong effects in broad regions that include many genes. Positional cloning studies have identified 6 genes for asthma: a disintegrin and metalloprotease domain 33 on chromosome 20p13,⁴ dipeptidyl-peptidase 10 on 2q14.1,⁵ PHD finger protein 11 on 13q14.11,⁶ neuropeptide S receptor 1 (or GPRA) on 7p14.3,7 MHC-I, G (HLA-G) on 6p21.3,8 and cytoplasmic FMR1 interacting protein 2 on 5q33.3.

Candidate-gene association studies have identified more than 100 genes for asthma and asthma-related traits.^{2,10,11} Although candidate-gene association studies have identified many genes, only a few have been replicated extensively. Thus, only 14 genes including genes on 5q and 6p (adrenergic β -2-receptor, IL-4 receptor, *HLA-DRB1*, *IL13*, *CD14*, *TNF*, membrane-spanning 4-domains, subfamily A, member 2 [or *FCER1B*], *IL4*, a disintegrin and metalloprotease domain 33, signal transducer and activator of transcription 6, IL4 induced, *IL10*, *HLA-DQB1*, glutathione S-transferase π 1, and lymphotoxin- α) have been replicated in more than 20 independent studies.¹⁰ Even for highly replicated genes, replication might be a result of winner's bias and/or loose replication standard (gene as a unit and related phenotypes).

A GWAS is a hypothesis-free approach able to identify novel genes with mild/moderate effects and thus has become the best approach for studying association between genes and common disease phenotypes. To date, only 4 GWASs have been performed for asthma and asthma-related traits.¹² The first GWAS of childhood asthma identified ORM1-like 3 on chromosome 17q12.¹³ The second GWAS of serum YKL-40 levels identified chitinase 3-like 1 on 1q32.¹⁴ The third GWAS was for a related trait, total

From ^athe Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem; and ^bEpiMetrix, Inc, Sunnyvale.

^{*}These authors contributed equally to this work.

The clinical TENOR study was supported by Genentech, Inc, and Novartis Pharmaceuticals Corp, and this genetic study was funded by NIH HL76285 and HL87665.

Disclosure of potential conflict of interest: D. A. Meyers has received research support from the National Institutes of Health. S. P. Peters has consulted for Genentech and has received research support from Genentech and the National Institutes of Health/ National Heart, Lung, and Blood Institute. E. R. Bleecker is a member of Genentech's TENOR Steering Committee and has received research support (but no personal income) from Genentech and the National Institutes of Health. T. Haselkorn has consulted for Genentech. The rest of the authors have declared that they have no conflict of interest.

Received for publication August 6, 2009; revised October 1, 2009; accepted for publication November 13, 2009.

Reprint requests: Deborah A. Meyers, PhD, Center for Human Genomics, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157. E-mail: dmeyers@wfubmc.edu.

^{0091-6749/\$36.00}

^{© 2010} American Academy of Allergy, Asthma & Immunology doi:10.1016/j.jaci.2009.11.018

Abbreviat	tions used
FVC:	Forced vital capacity
GC:	Genomic control
GWAS:	Genome-wide association study
IBS:	Identity-by-state
LCR:	Locus control region
LD:	Linkage disequilibrium
MAF:	Minor allele frequency
QC:	Quality control
SNP:	Single nucleotide polymorphism
TENOR:	The Epidemiology and Natural History of Asthma:
	Outcomes and Treatment Regimens

serum IgE levels, and the most significant single nucleotide polymorphisms (SNPs) are in the Fc fragment of IgE, high-affinity I, receptor for α polypeptide gene (*FCER1A*) on chromosome 1q23, and the second highest region observed was *RAD50* on 5q31.¹⁵ The fourth GWAS of childhood asthma indicated phosphodiesterase 4D, cyclic adenosine monophosphate–specific (phosphodiesterase E3 dunce homolog, *Drosophila*) (*PDE4D*) on chromosome 5q12.¹⁶

In this study, we performed a GWAS of asthma in The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) population of severe or difficult to treat asthmatics to search for novel genes and to confirm previously identified genes involved in asthma. The purpose of the TENOR study was to investigate the natural history of asthma in a large cohort of well characterized patients with severe or difficult to treat asthma; no treatment intervention was involved, and patients continued to be treated by their asthma specialists.¹⁷⁻¹⁹

METHODS Study subjects

The TENOR study was a multicenter observational and longitudinal cohort study of 4756 patients with asthma described as "severe or difficult-to-treat" by their physicians, sponsored by Genentech and Novartis.¹⁷ Subjects were included if they had physician-characterized difficult-to-treat asthma and met additional criteria based on frequency of urgent care visits and/or the use of multiple controller medications. The clinical sites from the original TENOR study were contacted and invited to participate in this study. Sites that agreed were mailed Oragene DNA saliva collection kits (DNA Genotek, Inc, Ontario, Canada), labeled with the TENOR participant identification number. Sites then mailed the kits to participating individuals, who sent their collected samples to the Center for Human Genomics at Wake Forest University School of Medicine. This process was required to maintain anonymity between investigators at Wake Forest University and the study participants. Unfortunately, the TENOR study had ended (end of 2004) before this project started, so it was difficult to recontact participants. A total of 607 samples had sufficient DNA for successful SNP genotyping. Table I shows the demographic data for the TENOR cases and the 2 control populations. The TENOR patients with asthma who were genotyped were similar in characteristics to the larger TENOR cohort.

General population controls were obtained by using the Illumina iControIDB client (www.illumina.com) to download genotypes for 3294 white individuals with genotype data available from any of the 3 available HumanHap550 k products (v1, v3, and -2v3). As shown in Table I, only age and sex data are available. Additional control samples for asthma-related quantitative traits were obtained from a separate GWAS for asthma. These 363 phenotyped controls had no personal or family history of asthma and had normal pulmonary function including lack of bronchial hyperresponsiveness or bronchodilator reversibility. Testing also included measures of atopy including total serum IgE levels (Table I). HapMap samples (N = 262) to be used for genetic ancestry check were also downloaded from the iControlDB database (Illumina, Inc) after selecting the HumanHap300_v1 genotyping product.

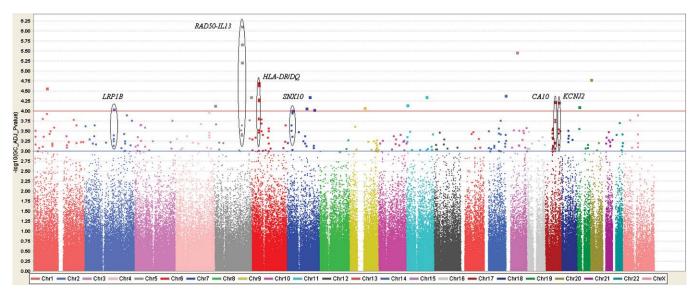
DNA was isolated by using the protocol described by DNA Genotek, and SNP genotyping was performed by using the Illumina HumanCNV370 BeadChip. The samples were clustered by first applying Illumina's cluster definition, removing samples with call rates less than 0.90, and then reclustering using the samples themselves.

Statistical analysis

PLINK (version 1.06; http://pngu.mgh.harvard.edu/purcell/plink/)²⁰ was the main software used to perform statistical analysis unless otherwise stated.

Quality control (QC) was applied to cases and controls separately because they were genotyped by using slightly different Illumina products. Genetic ancestry of the TENOR cases was determined using the HapMap 300 k dataset as a reference. Fixed 3 groups clustering and pairwise population concordance of 1.0E-05 based on identity-by-state (IBS) were used to cross-validate ethnic group identity. Subjects were removed if they (1) were not of European white descent, (2) had low genotyping call rates (<95%), (3) were discrepant or ambiguous for genetic sex (heterozygous haploid genotype percentage ≥ 0.01 or X chromosome homorozygosity F \geq 0.9), (4) failed the cryptic relatedness check (PI_HAT > 0.125), or (5) were detected as an outlier (>6 SD for the first or second principal component). After subjects meeting these criteria were deleted, SNPs were deleted if the call rates were low (95%) or were inconsistent with Hardy-Weinberg equilibrium (P < 10E-04). QC was then applied on the subjects and SNPs of merged case-control dataset as done separately. SNPs were also deleted if the minor allele frequency (MAF) was less than 0.05 in cases and controls or the Hardy-Weinberg equilibrium P value was less than .01 in controls only.

Asthma susceptibility was analyzed by comparing the non-Hispanic white TENOR cases to the general population Illumina controls. To reduce population stratification, 4 controls were matched with every 1 case based on pairwise IBS. Principal components were generated by using principal components analysis in EIGENSTRAT (version 3.0; http://genepath.med.har-vard.edu/~reich/Software.htm).²¹ Sex, age, and significant principal components were used as covariates in the logistic additive model. Genomic control (GC) was applied on *P* values to reduce population stratification further.²² A linear model was analyzed in GWAS-identified candidate regions in 473 TENOR cases and 363 phenotyped controls for asthma-related quantitative traits (total serum IgE, % predicted FEV₁, forced vital capacity [FVC], and FEV₁/FVC).


Haploview (http://www.broad.mit.edu/mpg/haploview/) was used to generate linkage disequilibrium plots.²³ Ninety-five percent CIs on D' were used to define blocks.²⁴ SNAP (version 2.0; http://www.broad.mit.edu/mpg/ snap/) was used to generate the association plots.²⁵ Imputation was performed based on HapMap II CEU genotype data²⁶ by using MACH (version 1.0; http://www.sph.umich.edu/csg/abecasis/MaCH/index.html).²⁷ Association of candidate SNPs with nearby gene expression data in lymphocytes was performed based on the GENEVAR dataset (http://www.sanger.ac.uk/humgen/ genevar/)²⁸ by using WGAViewer.²⁹

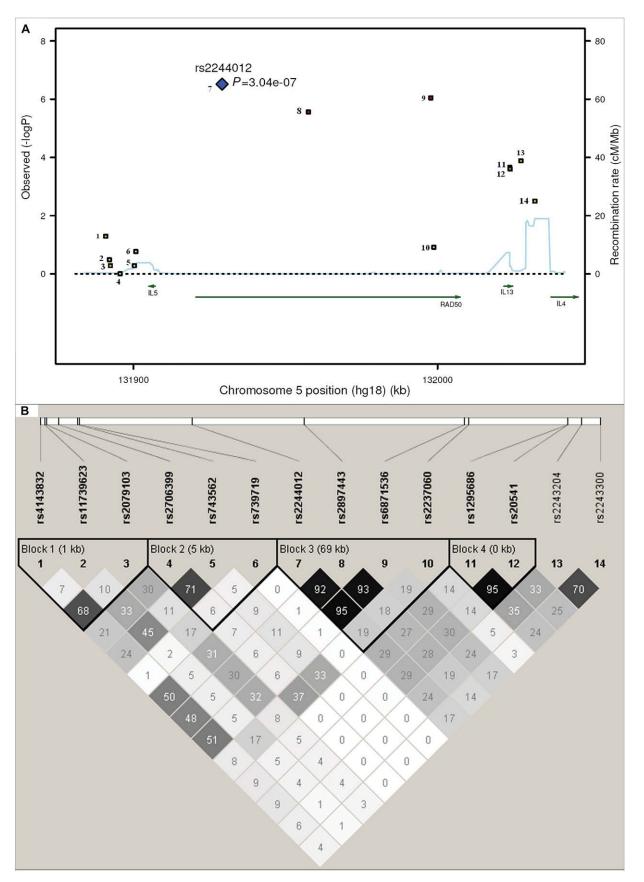
RESULTS

A total of 607 TENOR cases were genotyped with the HumanCNV370 BeadChip. After removal of nonwhite samples (see this article's Fig E1 in the Online Repository at www.jacion line.org) and removal on the basis of the QC criteria, data from 474 patients with asthma were carried forward to analysis. Of the 3294 Illumina white controls downloaded from iControldb, 3,141 Illumina controls passed QC. After merging 474 TENOR cases with 3141 Illumina controls and evaluating the combined QC metrics, 473 cases and 3106 controls were retained. To reduce population stratification, 4 controls were matched with every 1 case on the basis of pairwise IBS; thus, 473 cases and

	TENOR cases	Illumina controls	Phenotyped controls
N	473	1892	363
Age (y)	46.9 ± 18.4	31.4 ± 21.9	32.1 ± 10.3
Sex (% female)	63.0	62.5	61.2
Log total IgE (geometric mean)	1.9 ± 0.7 (88.5)	NA	$1.3 \pm 0.7 (19.6)$
FEV ₁ (%)	78.5 ± 21.6	NA	97.9 ± 10.7
FVC (%)	89.5 ± 19.9	NA	100.8 ± 11.2
FEV ₁ /FVC	0.72 ± 0.12	NA	0.82 ± 0.08

Illumina controls were used for GWAS. The Wake Forest phenotyped controls were mainly recruited through the NHLBI Collaborative Study on the Genetics of Asthma and the NHLBI Severe Asthma Research Program and were genotyped as a subset of the NHLBI STAMPEED study.

FIG 1. Genome-wide association of 292,443 SNPs in 473 TENOR cases and 1892 Illumina controls. Color scale of the *x*-axis represents chromosomes. Negative logarithm–transformed GC-adjusted *P* values are shown on the *y*-axis.


TABLE II. Association results of 14 SNPs in T_H2 cytokine locus on chromosome 5

No.	SNP	Position	Gene	Alleles (M:m)	MAF	OR (95% CI)	P value	Log total IgE	FEV ₁ /FVC	FEV ₁ (%)	FVC (%)
1	rs4143832	131890876	IL5	C:A	0.178	1.23 (1.00-1.51)	5.10E-02	4.31E-02	7.01E-01	5.31E-01	8.01E-01
2	rs11739623	131892051	IL5	C:T	0.255	0.91 (0.75-1.10)	3.28E-01	4.28E-01	8.14E-01	3.38E-01	3.91E-01
3	rs2079103	131892405	IL5	G:T	0.237	1.06 (0.88-1.28)	5.22E-01	2.30E-01	8.84E-01	4.36E-01	6.05E-01
4	rs2706399	131895601	IL5	A:G	0.497	1.00 (0.85-1.17)	9.92E-01	9.85E-01	8.28E-01	5.23E-01	4.15E-01
5	rs743562	131900282	IL5	C:T	0.423	1.06 (0.89-1.25)	5.22E-01	5.94E-01	5.18E-01	7.35E-01	4.98E-01
6	rs739719	131900764	IL5	G:T	0.069	0.79 (0.57-1.11)	1.72E-01	1.20E-01	1.96E-01	9.95E-01	8.02E-01
7	rs2244012	131929124	RAD50	T:C	0.212	1.64 (1.36-1.97)	3.04E-07	5.90E-03	3.18E-02	8.64E-02	1.59E-01
8	rs2897443	131957493	RAD50	C:A	0.199	1.58 (1.31-1.92)	2.74E-06	1.86E-02	9.75E-02	1.99E-01	2.48E-01
9	rs6871536	131997773	RAD50	T:C	0.208	1.60 (1.33-1.94)	9.03E-07	2.61E-03	3.36E-02	1.38E-01	2.58E-01
10	rs2237060	131998784	RAD50	A:C	0.425	0.88 (0.74-1.04)	1.22E-01	2.56E-01	1.19E-01	1.16E-01	2.79E-01
11	rs1295686	132023742	IL13	G:A	0.198	1.45 (1.19-1.76)	2.21E-04	6.16E-02	2.10E-03	1.84E-03	3.77E-02
12	rs20541	132023863	IL13	C:T	0.191	1.44 (1.19-1.76)	2.50E-04	6.06E-02	1.83E-03	2.18E-03	3.69E-02
13	rs2243204	132027393	IL13	C:T	0.086	1.69 (1.29-2.21)	1.31E-04	1.67E-03	1.11E-02	1.39E-02	8.10E-02
14	rs2243300	132031985	IL4	G:T	0.08	1.51 (1.15-1.99)	3.17E-03	3.14E-02	1.57E-03	7.89E-03	8.58E-02

Alleles (M:m), Major allele: minor allele; OR, odds ratio.

Log total IgE, FEV₁/FVC, FEV₁, and FVC are P values of asthma-related quantitative traits.

1892 Illumina controls were used for GWAS (see Table I for demographics and this article's Fig E2 in the Online Repository at www.jacionline.org). After QC analysis of the 318,075 common SNPs, 292,443 SNPs were retained for the GWAS. The GWAS of asthma was performed on 292,443 SNPs of 473 TENOR cases and 1892 Illumina controls with sex, age, and significant principal components as covariates in the logistic additive model (Fig 1). GC was applied to P values to reduce

FIG 2. LD and association plot of 14 SNPs in the T_{H2} cytokine locus. **A**, Association plot: negative logarithm-transformed *P* values (*left*) and recombination rate (*right*). **B**, LD plot: r^2 color scheme was used and labeled. 95% Cls on D' were used to set up blocks.

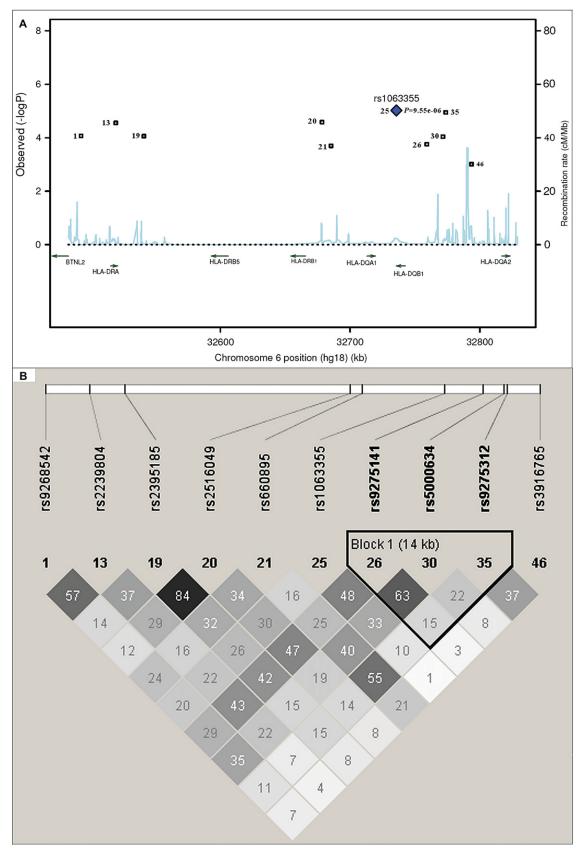
No.	SNP	Position	Gene	Alleles (M:m)	MAF	OR (95% CI)	P value
1	rs9268542	32492699	BTNL2	A:G	0.377	1.40 (1.18-1.65)	8.55E-05
13	rs2239804	32519501	HLA-DRA	A:G	0.461	1.43 (1.21-1.68)	2.80E-05
19	rs2395185	32541145	HLA-DRA	G:T	0.331	1.40 (1.19-1.66)	8.73E-05
20	rs2516049	32678378	HLA-DRB1	A:G	0.319	1.44 (1.22-1.71)	2.62E-05
21	rs660895	32685358	HLA-DRB1	A:G	0.202	1.45 (1.19-1.75)	2.02E-04
25	rs1063355	32735692	HLA-DQB1	C:A	0.397	0.68 (0.58-0.81)	9.55E-06
26	rs9275141	32759095	HLA-DQB1	T:G	0.497	1.37 (1.16-1.61)	1.77E-04
30	rs5000634	32771542	HLA-DQB1	T:C	0.386	1.39 (1.18-1.65)	9.16E-05
35	rs9275312	32773706	HLA-DQB1	A:G	0.132	1.63 (1.31-2.02)	1.13E-05
46	rs3916765	32793528	HLA-DQA2	G:A	0.11	1.50 (1.18-1.90)	9.78E-04

TABLE III. Association results of 10 of 46 SNPs (with $P \le .001$) in the HLA-DR/DQ region

Alleles (M:m), Major allele:minor allele; BTNL2, butyrophilin-like 2; OR, odds ratio.

population stratification (genomic inflation factor = 1.073 and 1.000 before and after adjustment; see this article's Fig E3 in the Online Repository at www.jacionline.org). In total, 248 SNPs had GC-adjusted *P* values $\leq 1.0E-03$ (see this article's Table E1 in the Online Repository at www.jacionline.org). Focusing on SNPs with a GC-adjusted *P* values $\leq 1.0E-04$ and at least 2 neighboring SNPs (± 100 kb) with GC-adjusted *P* values $\leq 1.0E-03$, six regions were identified: *RAD50-IL13* on chromosome 5q31.1, *HLA-DR/DQ* on 6p21.32, low density lipoprotein-related protein 1B on 2q22.1-22.2, sorting nexin 10 on 7p15.2, carbonic anhydrase X on 17q21.33, and potassium inwardly-rectifying channel, subfamily J, member 2 on 17q24.3 (Fig 1; Table E1).

The RAD50-IL13 region had the strongest evidence for association (Table II; Fig 2, A) with multiple SNPs in this region strongly associated with asthma susceptibility (rs2244012, rs6871536, and rs2897443 in RAD50 ranked highly as 1, 2, and 4, respectively, in this study). rs2244012 in intron 2 of RAD50 had an odds ratio of 1.64 (95% CI, 1.36-1.97; P = 3.04E-07; GC-adjusted P = 7.69E-07). Three SNPs in or near IL13 (rs2243204 [3' downstream], rs20541 [Arg130Gln], and rs1295686 [intron 3]) were also associated with asthma (P <.001), but in weak LD $(0.2 < r^2 < 0.3)$ with SNPs in *RAD50* (Fig 2, A and B). rs2243300, which is \sim 5 kb upstream of IL4, was weakly associated with asthma (P = .0032). Six SNPs downstream of IL5 were not associated with asthma, although they were in weak LD with SNPs in RAD50 (Table II; Fig 2, A and B). Four LD blocks were identified based on 95% CI of D' (Fig 2, B).²⁴ Blocks 1 and 2 were each composed of 3 SNPs downstream of IL5. Block 3 was composed of 4 SNPs in the intron of RAD50. Block 4 was composed of 2 SNPs in IL13.


Linear model analysis was performed with the 14 SNPs of the T_H2 cytokine locus in 473 TENOR cases and 363 phenotyped controls for asthma-related quantitative traits (total serum IgE, FEV₁, FVC, and FEV₁/FVC; Table II). Multiple SNPs in each gene—*RAD50*, *IL13*, and *IL4*, but not *IL5*—showed significant association ($P \le .05$) with asthma-related quantitative traits.

The HLA-DR/DQ region (Table III; Fig 3, A) also showed consistent association with asthma. rs1063355 in the 3' untranslated region of *HLA-DQB1* had an odds ratio of 0.68 (95% CI, 0.58-0.81; P = 9.55E-06; GC-adjusted P = 1.93E-05). Ten of the 46 SNPs in the HLA-DR/DQ region had $P \leq .001$ (Table III; Fig 3, A). Multiple SNPs in or near butyrophilin-like 2, *HLA-DRA*, *HLA-DRB1*, *HLA-DQB1*, and *HLA-DQA2*, were strongly associated with asthma (P < 10E-04). LD is complicated in this region when considering all 46 SNPs (data not shown). One LD block composed of 3 SNPs upstream of *HLA-DQB1* was formed on the basis of the 95% CI of D' of these 10 SNPs (Fig 3, *B*).

Linear model analysis was performed with the 10 SNPs of the HLA-DR/DQ region for asthma-related quantitative traits (Table III). A single SNP, rs1063355, on *HLA-DQB1* showed significant association with asthma-related quantitative traits (P = .01, .001, .007,and .05 for total serum IgE, FEV₁, FVC, and FEV₁/FVC, respectively).

DISCUSSION

The highest associated SNP identified in this study was rs2244012 in intron 2 of RAD50 (P = 3.04E-07). In addition, evidence was observed for association with multiple SNPs in the RAD50-IL13 region for asthma susceptibility and asthma related quantitative traits. The protein encoded by RAD50 is involved in DNA double-strand break repair, and its expression level is constitutively low in most tissues; thus, it has no known function directly related to asthma, although the MER11-RAD50-NBS1 complex has been shown to be involved in somatic hypermutation and gene conversion of immunoglobulin regions.³⁰ On the contrary, other genes (IL4, *IL5*, and *IL13*) in the T_{H2} cytokines locus are better candidates on the basis of their biologic functions. Three SNPs in IL13 in this study were associated with asthma. IL13 is critical to the pathogenesis of allergen-induced asthma and thus one of the most highly studied and replicated genes in both genomewide linkage and candidate-gene association studies. rs20541 (Arg130Gln or IL13+4257GA), in the coding region of IL13, was also analyzed in this study and has been shown to be associated with asthma³¹ and total serum IgE levels.³² rs1800925 (IL13-1111CT), in the promoter region of IL13, has been shown to be associated with asthma³³ and total serum IgE levels.³⁴ In a GWAS with total serum IgE levels, 4 SNPs in RAD50 (rs2706347, rs3798135, rs2040704, and rs7737470), have been identified (P < 10E-04).¹⁵ These 4 SNPs in *RAD50* were in strong LD with rs1800925 $(0.7 < r^2 < 0.8)$ and in weak LD with rs20541 (0.2 < r^2 < 0.3) in *IL13*.¹⁵ These results are consistent with the results of this study because many of the TENOR patients with asthma were recruited from allergists' offices and the population has increased IgE levels.¹⁸ Because the actual functional SNPs cannot be determined purely by their P values, it is difficult to dissect the association data of RAD50 from IL13 in this study or other genetic studies because of the degree of LD present in this chromosomal region.

FIG 3. LD and association plot of 10 SNPs in the HLA-DR/DQ region. **A**, Association plot: negative logarithmtransformed *P* values (*left*) and recombination rate (*right*). **B**, LD plot: t^2 color scheme was used and labeled. 95% Cls on D' were used to set up blocks. Only 10 of 46 SNPs (with $P \le .001$) are shown.

In a transgenic mouse study, a T_{H2} locus control region (LCR) was identified as the 25-kb fragment at the 3' end of Rad50.³⁵ An LCR is defined experimentally as regulating the expression of linked genes in a copy number-dependent and tissue-specific manner. The T_H2 LCR is involved in the chromatin configuration to reorganize promoters of IL4, IL5, and IL13 in proximity and coregulation of T_{H2} cytokine expression.³⁶ Seven *Rad50* DNase I-hypersensitive sites (RHS1-7) were identified, where RHS4-7 formed the core of the LCR.37 LCR-C (RHS7) and LCR-B (RHS6) were possible T_H2 cytokine expression enhancers; LCR-A (RHS6) and LCR-O (RHS5) were likely insulators.38 RHS7 is essential for T_H2 cytokine expression by showing T_{H2} specific demethylation after allergen stimulation and intrachromosomal interactions between LCR and the promoters of T_H2 cytokines.³⁹ Furthermore, RHS6, Rad50 promoter (RHS2), and *IL5* promoter interacted with IFN- γ (*Ifng*) on a different chromosome, which suggests an interchromosomal regulation of the expression of $T_H 1/T_H 2$ cytokines.⁴⁰ Although all these experiments were done in mouse, the RAD50 sequence is highly conserved in the LCR between human being and mouse. With imputation, multiple significant SNPs were found in the LCR (see this article's Table E2 in the Online Repository at www.jacionline.org): rs3798135 (P = 1.49E-06, in RHS5/ LCR-O), rs12653750 (P = 1.49E-06, in RHS6/LCR-A), rs2040704 (P = 1.33E-06, in RHS6/LCR-B), and rs2240032 (P = 6.68E-06, in RHS7/LCR-C). The association of rs2244012 with the expression levels of *IL13* in lymphocytes from white adults based on the GENEVAR dataset was not significant (P = 0.176), but may be a result of small sample size.

Because both a previous GWAS for total serum IgE levels and our GWAS of asthma identified *RAD50*, it appears to be a new candidate gene for asthma. Although it is still possible the signal from *RAD50* is purely a result of its LD with the promoter of *IL13*, *RAD50* deserves to be carefully studied when considering T_{H2} cytokine locus.

HLA-DR/DQ also showed consistent association with asthma-for example, rs1063355 in the 3' untranslated region of HLA-DQB1 (P = 9.55E-06), rs2239804 in intron of HLA-DRA (P = 2.80E-05), and rs2516049 5' upstream of HLA-DRB1 (P = 2.62E-05). HLA-DR/DQ is part of the HLA class II region, which is one of the most gene/variant-dense regions in the human genome and is associated with many diseases.⁴¹ HLA-DQB1 and *HLA-DRB1* have been shown to be associated with asthma in mul-tiple independent studies.⁴²⁻⁴⁴ Genetic variants in the HLA-DR/ DQ region have also been shown to be highly associated with HLA-DR/DQ gene expression, indicating that the association of HLA-DR/DQ with disease might be a result of gene expression levels in addition to antigen recognition.45,46 The association of rs2516049 with asthma in our study and with the expression levels of *HLA-DRB1* (P = 1.25E-04) in lymphocytes from white adults based on GENEVAR dataset indicated that the variant might function through expression level changes (see this article's Fig E4 in the Online Repository at www.jacionline.org).^{28,29} Imputation identified a SNP with a more significant P value, rs3998159 (P = 1.45 E-06), between *HLA-DQB1* and *HLA-DQA2* (see this article's Table E3 in the Online Repository at www.jacionline.org). It is difficult to determine the functional genes/SNPs in the HLA-DR/DQ region in our study because of the complicated LD pattern in this region. The long-range LD and haplotype analysis based on the MHC Haplotype Project may solve the issue.⁴⁷

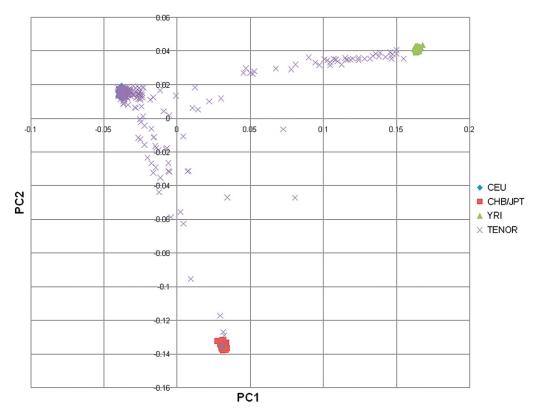
Using a GWAS approach, this study is the first to confirm the association of RAD50-IL13 and HLA-DR/DQ regions with

asthma susceptibility, regions that have been identified by multiple candidate-gene association studies and 1 genome-wide association study on total serum IgE levels. Our results weakly replicated the findings of the other GWAS: ORM1-like 3 and gasdermin B (GSDML; rs7216389) with asthma (P = .057); FCER1A (rs2251746) with total serum IgE (P = .040); and chitinase 3-like 1 (rs880633) with FEV₁ (P = .003), FVC (P = .031), and FEV₁/FVC (P = .040). rs1588265 (P = .507) and rs1544791 (P = .678) in *PDE4D* with asthma were not replicated. GWAS of total serum IgE by Weidinger et al¹⁵ identified several SNPs in RAD50 (P < 10E-04). In our study, the most significant SNP in RAD50 for total serum IgE is rs6871536 (P = 2.61E-03). The geometric mean of total serum IgE in the study by Weidinger et al¹⁵ is 42.41 (95% CI, 39.56-45.47). In our study, the geometric mean of total serum IgE is higher, 48.94 (95% CI, 43.04-55.65). The difference in the total serum IgE distribution and the relatively small sample size in our study may lead to the difference of significant levels between these 2 studies.

The potential for false-negative results could not be avoided in this study because of the relatively small sample size (473 cases), which may also be the reason that although significance levels of 10^{-7} (E-07) were observed, no SNP reached the Bonferroniadjusted multiple test criterion (P = .05/292,443 = 1.71E-07). However, evidence for multiple SNPs was observed in our results in this comprehensively phenotyped relatively homogeneous cohort of patients with difficult-to-treat asthma from the larger TENOR study. Our control datasets (general population and phenotyped controls) both have some limitations. They were both significantly younger (Table I) than TENOR cases, making our results a little conservative because some controls might become asthma cases in the future. Genotyping confirmation and fine-mapping of candidate regions were impossible because the Illumina controls were from a public database, but our approach compensated for this by using imputation. Population stratification was relatively strong between TENOR cases and Illumina 550k controls.

This GWAS confirmed the important role of T_{H2} cytokine and antigen presentation genes in asthma at a genome-wide level. Furthermore, these findings will stimulate more comprehensive research (eg, resequencing, long-range LD, epistasis, epigenetics, copy number variant, and function) on these 2 regions because of their functional importance and structural complexity.

We thank Dr Elizabeth J. Ampleford for analytical assistance. We also acknowledge the TENOR/SARP/CSGA/STAMPEED Study Group and the TENOR/SARP/CSGA/STAMPEED participants who contributed DNA samples.


Clinical implications: A GWAS of asthma identifies RAD50-IL13 and HLA-DR/DQ. These findings will stimulate more comprehensive research on these genes because of their structural complexity and functional importance in the pathogenesis of asthma.

REFERENCES

- Hoffjan S, Ober C. Present status on the genetic studies of asthma. Curr Opin Immunol 2002;14:709-17.
- Ober C, Hoffjan S. Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun 2006;7:95-100.
- Denham S, Koppelman GH, Blakey J, Wjst M, Ferreira MA, Hall IP, et al. Metaanalysis of genome-wide linkage studies of asthma and related traits. Respir Res 2008;9:38.

- Van Eerdewegh P, Little RD, Dupuis J, Del Mastro RG, Falls K, Simon J, et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002;418:426-30.
- Allen M, Heinzmann A, Noguchi E, Abecasis G, Broxholme J, Ponting CP, et al. Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nat Genet 2003;35:258-63.
- Zhang Y, Leaves NI, Anderson GG, Ponting CP, Broxholme J, Holt R, et al. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat Genet 2003;34:181-6.
- Laitinen T, Polvi A, Rydman P, Vendelin J, Pulkkinen V, Salmikangas P, et al. Characterization of a common susceptibility locus for asthma-related traits. Science 2004;304:300-4.
- Nicolae D, Cox NJ, Lester LA, Schneider D, Tan Z, Billstrand C, et al. Fine mapping and positional candidate studies identify HLA-G as an asthma susceptibility gene on chromosome 6p21. Am J Hum Genet 2005;76:349-57.
- Noguchi E, Yokouchi Y, Zhang J, Shibuya K, Shibuya A, Bannai M, et al. Positional identification of an asthma susceptibility gene on human chromosome 5q33. Am J Respir Crit Care Med 2005;172:183-8.
- Vercelli D. Discovering susceptibility genes for asthma and allergy. Nat Rev Immunol 2008;8:169-82.
- 11. Zhang J, Pare PD, Sandford AJ. Recent advances in asthma genetics. Respir Res 2008;9:4.
- Willis-Owen SA, Cookson WO, Moffatt MF. Genome-wide association studies in the genetics of asthma. Curr Allergy Asthma Rep 2009;9:3-9.
- Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 2007;448:470-3.
- Ober C, Tan Z, Sun Y, Possick JD, Pan L, Nicolae R, et al. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N Engl J Med 2008;358:1682-91.
- Weidinger S, Gieger C, Rodriguez E, Baurecht H, Mempel M, Klopp N, et al. Genome-wide scan on total serum IgE levels identifies FCER1A as novel susceptibility locus. PLoS Genet 2008;4:e1000166.
- Himes BE, Hunninghake GM, Baurley JW, Rafaels NM, Sleiman P, Strachan DP, et al. Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene. Am J Hum Genet 2009;84:581-93.
- 17. Dolan CM, Fraher KE, Bleecker ER, Borish L, Chipps B, Hayden ML, et al. Design and baseline characteristics of the epidemiology and natural history of asthma: Outcomes and Treatment Regimens (TENOR) study: a large cohort of patients with severe or difficult-to-treat asthma. Ann Allergy Asthma Immunol 2004;92:32-9.
- Borish L, Chipps B, Deniz Y, Gujrathi S, Zheng B, Dolan CM. Total serum IgE levels in a large cohort of patients with severe or difficult-to-treat asthma. Ann Allergy Asthma Immunol 2005;95:247-53.
- Miller MK, Johnson C, Miller DP, Deniz Y, Bleecker ER, Wenzel SE. Severity assessment in asthma: an evolving concept. J Allergy Clin Immunol 2005;116:990-5.
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-75.
- Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006;38:904-9.
- Clayton DG, Walker NM, Smyth DJ, Pask R, Cooper JD, Maier LM, et al. Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat Genet 2005;37:1243-6.
- Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005;21:263-5.
- Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The structure of haplotype blocks in the human genome. Science 2002;296:2225-9.
- Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker PI. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 2008;24:2938-9.

- Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007;449:851-61.
- Li Y, Abecasis GR. Mach 1.0: rapid haplotype reconstruction and missing genotype inference. Am J Hum Genet 2006;S79:2290.
- Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 2007;315:848-53.
- Ge D, Zhang K, Need AC, Martin O, Fellay J, Urban TJ, et al. WGAViewer: software for genomic annotation of whole genome association studies. Genome Res 2008;18:640-3.
- Yabuki M, Fujii MM, Maizels N. The MRE11-RAD50-NBS1 complex accelerates somatic hypermutation and gene conversion of immunoglobulin variable regions. Nat Immunol 2005;6:730-6.
- Heinzmann A, Mao XQ, Akaiwa M, Kreomer RT, Gao PS, Ohshima K, et al. Genetic variants of IL-13 signalling and human asthma and atopy. Hum Mol Genet 2000;9:549-59.
- 32. Graves PE, Kabesch M, Halonen M, Holberg CJ, Baldini M, Fritzsch C, et al. A cluster of seven tightly linked polymorphisms in the IL-13 gene is associated with total serum IgE levels in three populations of white children. J Allergy Clin Immunol 2000;105:506-13.
- van der Pouw Kraan TC, van Veen A, Boeije LC, van Tuyl SA, de Groot ER, Stapel SO, et al. An IL-13 promoter polymorphism associated with increased risk of allergic asthma. Genes Immun 1999;1:61-5.
- 34. Liu X, Beaty TH, Deindl P, Huang SK, Lau S, Sommerfeld C, et al. Associations between total serum IgE levels and the 6 potentially functional variants within the genes IL4, IL13, and IL4RA in German children: the German Multicenter Atopy Study. J Allergy Clin Immunol 2003;112:382-8.
- Lee GR, Fields PE, Griffin TJ, Flavell RA. Regulation of the Th2 cytokine locus by a locus control region. Immunity 2003;19:145-53.
- Spilianakis CG, Flavell RA. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol 2004;5:1017-27.
- Fields PE, Lee GR, Kim ST, Bartsevich VV, Flavell RA. Th2-specific chromatin remodeling and enhancer activity in the Th2 cytokine locus control region. Immunity 2004;21:865-76.
- Lee DU, Rao A. Molecular analysis of a locus control region in the T helper 2 cytokine gene cluster: a target for STAT6 but not GATA3. Proc Natl Acad Sci U S A 2004;101:16010-5.
- Lee GR, Spilianakis CG, Flavell RA. Hypersensitive site 7 of the TH2 locus control region is essential for expressing TH2 cytokine genes and for long-range intrachromosomal interactions. Nat Immunol 2005;6:42-8.
- Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA. Interchromosomal associations between alternatively expressed loci. Nature 2005;435:637-45.
- Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet 2009;54:15-39.
- 42. Torio A, Sanchez-Guerrero I, Muro M, Villar LM, Minguela A, Marin L, et al. HLA class II genotypic frequencies in atopic asthma: association of DRB1*01-DQB1*0501 genotype with Artemisia vulgaris allergic asthma. Hum Immunol 2003;64:811-5.
- Lin YC, Lu CC, Su HJ, Shen CY, Lei HY, Guo YL. The association between tumor necrosis factor, HLA-DR alleles, and IgE-mediated asthma in Taiwanese adolescents. Allergy 2002;57:831-4.
- 44. Cho SH, Kim YK, Oh HB, Jung JW, Son JW, Lee MH, et al. Association of HLA-DRB1(*)07 and DRB1(*)04 to citrus red mite (Panonychus citri) and house dust mite sensitive asthma. Clin Exp Allergy 2000;30:1568-75.
- Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC, et al. A genomewide association study of global gene expression. Nat Genet 2007;39:1202-7.
- Beaty JS, West KA, Nepom GT. Functional effects of a natural polymorphism in the transcriptional regulatory sequence of HLA-DQB1. Mol Cell Biol 1995;15: 4771-82.
- Horton R, Gibson R, Coggill P, Miretti M, Allcock RJ, Almeida J, et al. Variation analysis and gene annotation of eight MHC haplotypes: the MHC Haplotype Project. Immunogenetics 2008;60:1-18.

FIG E1. Cluster plot of 607 TENOR cases and 262 HapMap samples. *PC1* and *PC2* are the first and second principle component, respectively.

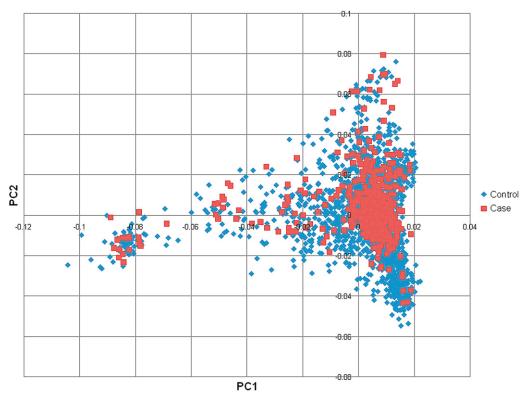
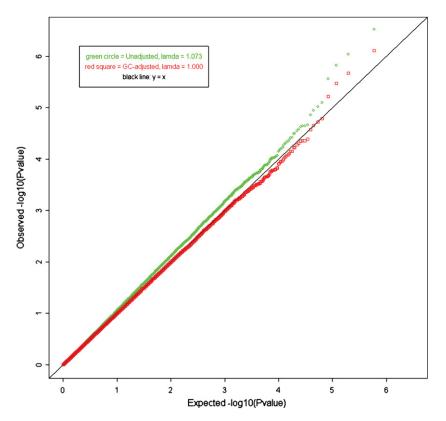
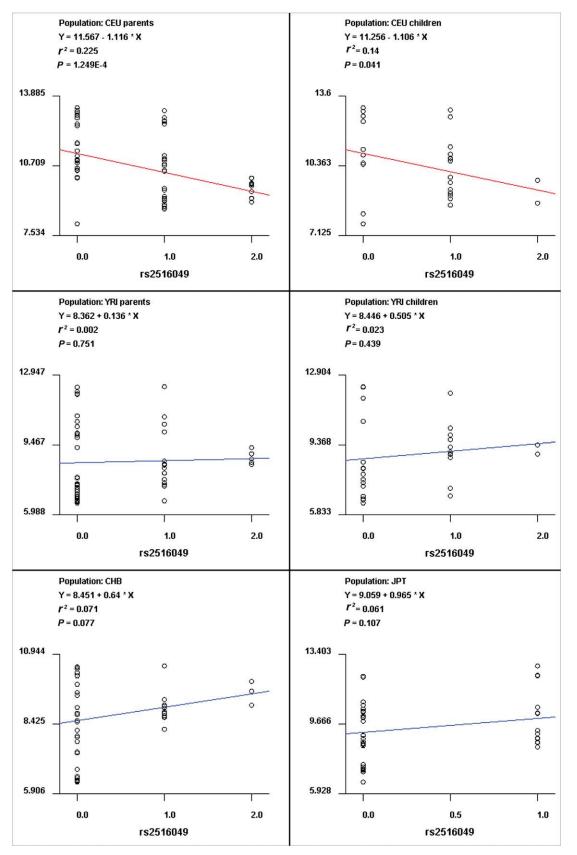




FIG E2. Principle components plot of 473 TENOR cases and 1892 Illumina controls. *PC1* and *PC2* are the first and second principle component, respectively.

FIG E3. GWAS qq-plot of 292,443 SNPs of 473 TENOR cases and 1,892 Illumina controls. Negative logarithm–transformed expected *P* values are shown on the *x-axis*. Negative logarithm–transformed observed *P* values are shown on the *y-axis*.

FIG E4. Association of rs2516049 with the expression of *HLA-DRB1* in lymphocytes based on GENEVAR dataset. *X-axis* represents copy numbers of minor allele of rs2516049. *Y-axis* represents the expression levels of *HLA-DRB1* in lymphocytes.

TABLE E1. Association results of 248 SNPs with GC-adjusted P values \leq 1.0E-03

SNP	UNADJ P value	GC-ADJ P value	Chr	Coordinate	Gene	Location
rs2244012	3.04E-07	7.69E-07	5	131929124	RAD50	Intron
rs6871536	9.03E-07	2.13E-06	5	131997773	RAD50	Intron
rs17525472	1.50E-06	3.41E-06	15	49756960	SCG3	Flanking_5UTR
rs2897443	2.74E-06	5.99E-06	5	131957493	RAD50	Intron
rs4815617	7.92E-06	1.62E-05	20	3775309	KIAA1271	Flanking_5UTR
rs1063355	9.55E-06	1.93E-05	6	32735692	HLA-DQB1	3UTR
rs9275312	1.13E-05	2.25E-05	6	32773706	HLA-DQB1	Flanking_5UTR
rs10493343	1.37E-05	2.69E-05	1	63486112	FOXD3	Flanking_5UTR
rs8020818	2.14E-05	4.09E-05	14	100753214	FLJ41170	Flanking_3UTR
rs6861032	2.29E-05	4.36E-05	5	174833658	SFXN1	Flanking_5UTR
rs17275283	2.30E-05	4.39E-05	11	96347024	JRKL	Flanking_3UTR
rs6958325	2.33E-05	4.43E-05	7	110464892	LRRN3	Flanking_5UTR
rs2516049	2.62E-05	4.95E-05	6	32678378	HLA-DRB1	Flanking_5UTR
rs2239804	2.80E-05	5.26E-05	6	32519501	HLA-DRA	Intron
rs967676	3.18E-05	5.92E-05	17	47315308	CA10	Intron
rs723498	3.25E-05	6.05E-05	17	65787127	KCNJ2	Flanking_3UTR
rs16909520	3.81E-05	7.01E-05	11	5041830	OR52E2	Flanking_5UTR
rs13159461	3.89E-05	7.16E-05	5	1256437	SLC6A19	Intron
rs2277968	4.27E-05	7.80E-05	19	9932669	COL5A3	Intron
rs1411164	4.46E-05	8.14E-05	9	72844892	TRPM3	Intron
rs11770226	4.69E-05	8.52E-05	7	94923367	PON2	Flanking_5UTR
rs10496855	4.90E-05	8.88E-05	2	141354850	LRP1B	Intron
rs326234	5.12E-05	9.26E-05	7	130526092	MKLN1	Flanking_5UTR
rs1859600	5.38E-05	9.69E-05	7	26509841	SNX10	Flanking_3UTR
rs3180361	5.83E-05	1.04E-04	7	26503438	SNX10	Flanking_3UTR
rs359486	6.11E-05	1.09E-04	4	163127283	FSTL5	Intron
rs757393	6.26E-05	1.12E-04	7	26498670	SNX10	Flanking_3UTR
rs1328589	6.50E-05	1.16E-04	1	63447502	FOXD3	Flanking_5UTR
rs646297	6.98E-05	1.24E-04	23	71455300	HDAC8	Flanking_3UTR
rs3181096	7.12E-05	1.26E-04	2	204278337	CD28	Flanking_5UTR
rs9268542	8.55E-05	1.49E-04	6	32492699	BTNL2	Flanking_5UTR
rs2395185	8.73E-05	1.52E-04	6	32541145	HLA-DRA	Flanking_3UTR
rs655198	8.87E-05	1.55E-04	1	42098604	HIVEP3	Intron
rs2280229	9.15E-05	1.59E-04	6	45651316	RUNX2	Flanking_3UTR
rs5000634	9.16E-05	1.59E-04	6	32771542	HLA-DQB1	Flanking_5UTR
rs11079992	9.24E-05	1.61E-04	17	47572536	CA10	Intron
rs3001156	9.46E-05	1.64E-04	1	192817561	CDC73	Flanking_3UTR
rs4867956	9.54E-05	1.66E-04	5	169676190	LOC257358	Flanking_5UTR
rs5928535	9.65E-05	1.67E-04	23	34313383	TMEM47	Flanking_3UTR
rs6779474	9.90E-05	1.71E-04	3	182738502	SOX2	Flanking_5UTR
rs7144274	9.94E-05	1.72E-04	14	77695406	ADCK1	Flanking_3UTR
rs1916804	9.98E-05	1.73E-04	2	228516940	WDR69	Flanking_3UTR
rs2938140	1.06E-04	1.83E-04	17	47531500	CA10	Intron
rs362112	1.14E-04	1.95E-04	22	33793994	RAXLX	Intron
rs9296461	1.19E-04	2.03E-04	6	45659449	RUNX2	Flanking_3UTR
rs6848139	1.21E-04	2.07E-04	4	123614491	IL2	Flanking_5UTR
rs6860112	1.26E-04	2.14E-04	5	4189154	IRX1	Flanking_3UTR
rs9810311	1.29E-04	2.19E-04	3	31456330	STT3B	Flanking_5UTR
rs4953456	1.30E-04	2.20E-04	2	47144074	TTC7A	Intron
rs643930	1.30E-04	2.21E-04	1	206224964	PLXNA2	Flanking_3UTR
rs6551207	1.30E-04	2.21E-04	3	27527986	SLC4A7	Flanking_5UTR
rs9885995	1.31E-04	2.21E 04 2.22E-04	7	20579891	ABCB5	Flanking_5UTR
rs2243204	1.31E-04	2.22E-04 2.23E-04	5	132027393	IL13	Flanking_3UTR
rs9346917	1.31E 04	2.23E 04 2.24E-04	6	162834976	PARK2	Flanking_5UTR
rs12995456	1.39E-04	2.35E-04	2	2573621	MYT1L	Flanking_5UTR
rs12352086	1.41E-04	2.39E-04	9	25707537	TUSC1	Flanking_5UTR
rs770918	1.49E-04	2.52E-04	1	98701525	SNX7	Flanking_5UTR
rs2329020	1.52E-04	2.56E-04	3	49660077	BSN	Intron
rs1542112	1.55E-04	2.61E-04	15	96669517	FLJ39743	Flanking_3UTR
rs8020795	1.59E-04	2.67E-04	13	67559788	RAD51L1	Intron
rs525247	1.60E-04	2.69E-04	6	81696055	BCKDHB	Flanking_3UTR
rs931992	1.61E-04	2.70E-04	17	35074961	TCAP	Flanking_5UTR
15/51//4	1.012-04	2.701-04	17	55074701	10/11	i iaikiiig_501K

SNP	UNADJ P value	GC-ADJ P value	Chr	Coordinate	Gene	Location
rs2967675	1.64E-04	2.74E-04	19	8650484	MGC33407	Flanking_3UTR
rs141155	1.66E-04	2.78E-04	17	65865187	KCNJ2	Flanking_3UTR
rs9275141	1.77E-04	2.94E-04	6	32759095	HLA-DQB1	Flanking_5UTR
rs2056317	1.77E-04	2.95E-04	15	35350843	MEIS2	Flanking_5UTR
rs11746935	1.78E-04	2.97E-04	5	127650646	FBN2	Intron
rs9906612	1.80E-04	3.00E-04	17	34801157	FBXL20	Intron
rs10233470	1.83E-04	3.04E-04	7	20525526	ITGB8	Flanking_3UTR
rs12324805	1.84E-04	3.06E-04	15	80139255	RKHD3	Flanking_5UTR
rs1029322	1.85E-04	3.08E-04	1	7318619	CAMTA1	Intron
rs456084	1.86E-04	3.08E-04	15	60404524	FLJ38723	Flanking_5UTR
rs7241842	1.86E-04	3.08E-04	18	33126739	BRUNOL4	Intron
rs1135889	1.86E-04	3.09E-04	17	71437716	ACOX1	Flanking_3UTR
rs10948239	1.86E-04	3.09E-04	6	45644058	RUNX2	Flanking_3UTR
rs996812	1.87E-04	3.10E-04	1	81229634	LPHN2	Flanking_5UTR
rs11701	1.88E-04	3.13E-04	14	20231893	ANG	Coding
rs556458	1.90E-04	3.15E-04	6	81687679	BCKDHB	Flanking_3UTR
rs10500350	1.93E-04	3.20E-04	16	7170644	A2BP1	Intron
rs1541533	1.94E-04	3.21E-04	11	17052787	RNU14	3UTR
rs17623690	1.99E-04	3.29E-04	13	58702026	DIAPH3	Flanking_3UTR
rs7456530	2.00E-04	3.31E-04	7	56011943	GBAS	Intron
rs2830865	2.00E-04	3.31E-04	21	27649571	ADAMTS5	Flanking_5UTR
rs3782309	2.02E-04	3.34E-04	12	26750663	ITPR2	Intron
rs660895	2.02E-04	3.34E-04	6	32685358	HLA-DRB1	Flanking_5UTR
rs359512	2.06E-04	3.41E-04	4	163100537	FSTL5	Intron
rs4601994	2.13E-04	3.51E-04	15	84235520	KLHL25	Flanking_5UTR
rs7214151	2.15E-04	3.55E-04	17	34761298	FBXL20	Intron
rs1956534	2.17E-04	3.56E-04	14	67963825	RAD51L1	Intron
rs312729	2.18E-04	3.58E-04	17	65818432	KCNJ2	Flanking_3UTR
rs6696780	2.21E-04	3.63E-04	1	76504495	ST6GALNAC3	Intron
rs1295686	2.21E-04	3.63E-04	5	132023742	IL13	Intron
rs7577607	2.25E-04	3.69E-04	2	192414794	SDPR	Intron
rs9563026	2.26E-04	3.71E-04	13	50591509	GUCY1B2	Flanking_5UTR
rs10146353	2.27E-04	3.72E-04	14	77705251	NRXN3	Flanking_5UTR
rs2307127	2.28E-04	3.73E-04	11	128817282	BARX2	Intron
rs739107	2.29E-04	3.76E-04	22	47195099	FAM19A5	Flanking_5UTR
rs16988492	2.31E-04	3.79E-04	23	72479814	CDX4	Flanking_5UTR
rs1543540	2.32E-04	3.81E-04	14	101867808	C14orf131	5UTR
rs2111996	2.33E-04	3.81E-04	10	107461332	SORCS3	Flanking_3UTR
rs5992495	2.33E-04	3.81E-04	22	18262984	TXNRD2	Coding
rs2025753	2.37E-04	3.87E-04	6	51805526	PKHD1	Intron
rs45426	2.39E-04	3.91E-04	4	163113553	FSTL5	Intron
rs2380945	2.39E-04	3.91E-04	2	141384793	LRP1B	Intron
rs20541	2.50E-04	4.07E-04	5	132023863	IL13	Coding
rs1444393	2.50E-04	4.08E-04	18	35540370	BRUNOL4	Flanking_5UTR
rs11765081	2.53E-04	4.13E-04	7	88312832	MGC26647	Flanking_5UTR
rs14138	2.56E-04	4.16E-04	2	46267950	PRKCE	3UTR
rs983789	2.57E-04	4.18E-04	1	157862306	APCS	Flanking_3UTR
rs904132	2.57E-04	4.19E-04	4	55496865	KDR	Flanking_3UTR
rs9299508	2.58E-04	4.20E-04	10	73213459	CDH23	Intron
rs1544412	2.61E-04	4.24E-04	7	26465493	SNX10	Flanking_3UTR
rs6577395	2.61E-04	4.25E-04	1	6914512	CAMTA1	Intron
rs10951140	2.62E-04	4.26E-04	7	26498245	SNX10	Flanking_3UTR
rs688540	2.63E-04	4.27E-04	1	47775034	FOXD2	Flanking_3UTR
rs2189556	2.67E-04	4.33E-04	7	26461733	SNX10	Flanking_3UTR
rs12574869	2.70E-04	4.37E-04	11	5029677	OR52J3	Flanking_3UTR
rs1579333	2.73E-04	4.42E-04	16	73710475	LDHD	Flanking_5UTR
rs9874701	2.74E-04	4.43E-04	3	16130293	GALNTL2	Flanking_5UTR
rs2823048	2.76E-04	4.47E-04	21	15384139	NRIP1	Flanking_5UTR
rs359508	2.77E-04	4.49E-04	4	163103214	FSTL5	Intron
rs179988	2.79E-04	4.51E-04	6	16446200	ATXN1	Intron
rs7208487	2.79E-04	4.51E-04	17	34796975	FBXL20	Intron
rs1350406	2.79E-04	4.52E-04	6	77542029	HTR1B	Flanking_3UTR

TABLE E1. (Continued)

SNP	UNADJ P value	GC-ADJ P value	Chr	Coordinate	Gene	Location
rs315791	2.94E-04	4.74E-04	5	169668498	LCP2	Flanking_5UTR
rs12373339	2.94E-04	4.75E-04	18	32632020	C18orf10	Intron
rs1877031	3.00E-04	4.83E-04	17	35067606	STARD3	Coding
rs1474454	3.03E-04	4.88E-04	17	36045007	SMARCE1	Intron
rs1873288	3.03E-04	4.88E-04	13	84779125	SLITRK6	Flanking_3UTR
rs11938388	3.05E-04	4.90E-04	4	7169428	GRPEL1	Flanking_5UTR
rs511625	3.05E-04	4.91E-04	2	141066570	LRP1B	Intron
rs1530758	3.10E-04	4.99E-04	2	23212606	UBXD4	Flanking_5UTR
rs10783425	3.11E-04	4.99E-04	12	49916559	DAZAP2	Flanking_5UTR
rs926929	3.15E-04	5.07E-04	10	83837968	NRG3	Intron
rs4959689	3.16E-04	5.07E-04	6	2562121	C6orf195	Flanking_3UTR
rs11635084	3.16E-04	5.08E-04	15	76473878	IREB2	Flanking_5UTR
rs2838906	3.19E-04	5.11E-04	21	45646335	COL18A1	Flanking_5UTR
rs9966349	3.24E-04	5.20E-04	18	53442584	NARS	Intron
rs4909638	3.28E-04	5.25E-04	8	138323508	C8ORFK32	Flanking_3UTR
rs2830863	3.32E-04	5.31E-04	21	27649080	ADAMTS5	Flanking_5UTR
rs3750340	3.32E-04	5.31E-04	9	130812210	SH3GLB2	Intron
rs9417254	3.36E-04	5.37E-04	10	20055938	PLXDC2	Flanking_5UTR
rs2275593	3.36E-04	5.38E-04	14	103709764	TDRD9	Flanking_3UTR
rs9789945	3.36E-04	5.38E-04	3	31452286	STT3B	Flanking_5UTR
rs7896565	3.39E-04	5.42E-04	10	123382368	FGFR2	Flanking_5UTR
rs8056241	3.40E-04	5.43E-04	16	55685889	CPNE2	Intron
rs1549709	3.49E-04	5.56E-04	2	141375997	LRP1B	Intron
rs6795028	3.50E-04	5.58E-04	3	88563780	C3orf38	Flanking_3UTR
rs957781	3.51E-04	5.60E-04	2	196500819	DNAH7	Intron
rs12338788	3.53E-04	5.63E-04	9	115253879	RGS3	Flanking_5UTR
rs10485961	3.53E-04	5.63E-04	7	78977339	MAGI2	Flanking_5UTR
rs4902538	3.55E-04	5.66E-04	14	67494562	RAD51L1	Intron
rs1901548	3.56E-04	5.68E-04	6	159818518	FLJ27255	Flanking_3UTR
rs1861828	3.58E-04	5.71E-04	9	89434951	DAPK1	Intron
rs4523612	3.61E-04	5.74E-04	10	120273282	PRLHR	Flanking_3UTR
rs727152	3.61E-04	5.75E-04	11	3976341	STIM1	Intron
rs2066381	3.64E-04	5.79E-04	1	239062050	RGS7	Intron
rs3897638	3.64E-04	5.80E-04	18	33151448	BRUNOL4	Intron
rs2834280	3.67E-04	5.84E-04	21	34150372	ITSN1	Intron
rs986032	3.67E-04	5.84E-04	1	168549668	SCYL1BP1	Flanking_5UTR
rs1769807	3.72E-04	5.91E-04	1	229718014	TSNAX	Flanking_5UTR
rs4621354	3.74E-04	5.94E-04	3	175070962	NLGN1	Intron
rs6535363	3.74E-04	5.94E-04	4	83781593	SCD5	Flanking_3UTR
rs203066	3.74E-04	5.95E-04	17	47349497	CA10	Intron
rs3917254 rs4866207	3.79E-04	6.01E-04 6.07E-04	2 5	102142950	IL1R1 CDH18	Intron
	3.82E-04			20700523		Flanking_5UTR
rs2866823 rs202124	3.87E-04 3.89E-04	6.14E-04	20	39912917	PTPRT	Flanking_3UTR
	3.89E-04 3.89E-04	6.17E-04 6.17E-04	17 22	47342798 49427626	CA10 ARSA	Intron
rs134774 rs7719641		6.17E-04		49427020	PLCXD3	Flanking_5UTR
	3.89E-04 3.89E-04		5 9		GAPVD1	Intron Flanking_3UTR
rs10760397 rs723923	3.90E-04	6.17E-04 6.18E-04	23	127173028 72267781	LOC340529	Flanking_5UTR
rs7054904	3.90E-04	6.18E-04	23	72274502	LOC340529	Flanking_5UTR
rs861475	3.90E-04	6.19E-04		206118011	CD34	Flanking_3UTR
rs208358	3.91E-04	6.19E-04	1	2740131	GNA12	
rs6962263	3.96E-04	6.26E-04	7 7	88328758	MGC26647	Intron Flanking_5UTR
		6.27E-04	14	98537686	BCL11B	
rs902810 rs2822687	3.96E-04 3.98E-04	6.27E-04 6.29E-04	21	14775306	SAMSN1	Flanking_3UTR Flanking_3UTR
rs2822087 rs10493817		6.30E-04				Flanking_5UTR
rs6719500	3.98E-04 3.98E-04	6.30E-04	1 2	88899475 196533647	PKN2 DNAH7	Coding
rs7393606	3.98E-04 3.98E-04	6.30E-04	10		VENTX	Flanking_3UTR
				134906487		U=
rs1244459	3.99E-04	6.31E-04 6.32E-04	10	7968246	ATP5C1	Flanking_3UTR Flanking_5UTR
rs7688489	4.00E-04 4.00E-04	6.32E-04 6.33E-04	4 2	109906763 38073146	AGXT2L1	-
rs6544127					FAM82A	Intron
rs767325 rs2106365	4.01E-04 4.02E-04	6.34E-04 6.36E-04	17 16	47260643 22830079	CA10 HS3ST2	Intron Intron
152100303	+.02E-04	0.30E-04	10	22030019	1155512	muon

SNP	UNADJ <i>P</i> value	GC-ADJ P value	Chr	Coordinate	Gene	Location
rs10485285	4.03E-04	6.38E-04	6	81535326	BCKDHB	Flanking_3UTR
rs10801687	4.13E-04	6.52E-04	1	89079849	PKN2	Flanking_3UTR
rs1019595	4.14E-04	6.54E-04	10	82575930	SH2D4B	Flanking_3UTR
rs867389	4.19E-04	6.60E-04	1	6907656	CAMTA1	Intron
rs10875660	4.20E-04	6.63E-04	12	46220298	FLJ21908	Flanking_3UTR
rs9677948	4.23E-04	6.67E-04	2	55290438	FLJ31438	Coding
rs7304994	4.30E-04	6.77E-04	12	8883237	A2ML1	Intron
rs12601221	4.38E-04	6.89E-04	17	65919990	KCNJ2	Flanking_3UTR
rs889608	4.40E-04	6.91E-04	16	85895044	FBXO31	Flanking_3UTR
rs2041992	4.42E-04	6.94E-04	19	51216311	PGLYRP1	Intron
rs2273866	4.44E-04	6.98E-04	9	130742712	PHYHD1	Coding
rs7623955	4.44E-04	6.98E-04	3	16014062	ANKRD28	Flanking_5UTR
rs875339	4.46E-04	7.00E-04	15	58883347	RORA	Intron
rs1507741	4.47E-04	7.02E-04	1	161224435	RGS4	Flanking_5UTR
rs10883109	4.48E-04	7.04E-04	10	100247350	HPSE2	Intron
rs6738615	4.52E-04	7.10E-04	2	222599119	PAX3	Flanking_3UTR
rs2933192	4.55E-04	7.13E-04	14	46456191	MAMDC1	Intron
rs3738795	4.59E-04	7.20E-04	1	90139102	LRRC8D	Intron
rs1565922	4.63E-04	7.25E-04	17	35084561	PERLD1	Intron
rs205764	4.66E-04	7.30E-04	7	130248776	KLF14	Flanking_5UTR
rs10496858	4.66E-04	7.30E-04	2	141356115	LRP1B	Intron
rs289107	4.66E-04	7.30E-04	15	60417907	FLJ38723	Flanking_5UTR
rs2070393	4.66E-04	7.31E-04	21	34160957	ITSN1	Intron
rs1575847	4.00E-04 4.71E-04	7.37E-04	7	94308081	SGCE	Flanking_5UTR
rs6007798	4.71E-04 4.71E-04	7.38E-04	22	46860129	LOC388915	Flanking_5UTR
rs3761353	4.75E-04	7.43E-04	22	34193743	ATP50	Flanking_3UTR
rs3197999	4.82E-04	7.54E-04	3	49696536	MST1	Coding
rs1565611		7.58E-04	14		BCL11B	U U
	4.85E-04 4.88E-04	7.63E-04	14	98543918 120721777	SC5DL	Flanking_3UTR
rs716066						Flanking_3UTR
rs606850	4.91E-04	7.66E-04	1	42047721	HIVEP3	Intron
rs4684448	4.91E-04 4.97E-04	7.66E-04 7.75E-04	3 23	4871495 71490721	ITPR1 HDAC8	Flanking_3UTR
rs1475091						Intron
rs3859956	5.08E-04	7.92E-04	23	43738241	NDP	Flanking_5UTR
rs4657210	5.12E-04	7.97E-04	1	160854047	DDR2	Flanking_5UTR
rs2271308	5.13E-04	7.99E-04	17	35071008	STARD3	Intron
rs462954	5.14E-04	8.00E-04	13	91169091	GPC5	Intron
rs1003385	5.17E-04	8.04E-04	12	114236286	TBX3	Flanking_5UTR
rs1552741	5.18E-04	8.05E-04	14	46414182	MAMDC1	Intron
rs4600441	5.18E-04	8.07E-04	15	25127607	GABRG3	Flanking_5UTR
rs2217008	5.19E-04	8.07E-04	4	153169194	PET112L	Flanking_5UTR
rs7601	5.20E-04	8.09E-04	15	89310596	PRC1	3UTR
rs943997	5.23E-04	8.13E-04	14	20535329	FLJ20859	Flanking_3UTR
rs547311	5.24E-04	8.15E-04	7	130248994	KLF14	Flanking_5UTR
rs13131255	5.25E-04	8.16E-04	4	31806809	PCDH7	Flanking_3UTR
rs730489	5.27E-04	8.18E-04	6	151441584	MTHFD1L	Intron
rs12685378	5.29E-04	8.22E-04	9	130787532	NUP188	Intron
rs9571705	5.31E-04	8.25E-04	13	66451841	PCDH9	Intron
rs311384	5.32E-04	8.27E-04	19	52147155	GRLF1	Intron
rs12464787	5.35E-04	8.31E-04	2	179148275	TTN	Coding
rs4073051	5.37E-04	8.34E-04	1	24780002	Clorf130	Intron
rs2293700	5.38E-04	8.35E-04	19	40688220	ZD52F10	Intron
rs203049	5.39E-04	8.36E-04	17	47433988	CA10	Intron
rs4985019	5.43E-04	8.42E-04	16	9019717	USP7	Flanking_5UTR
rs2054892	5.46E-04	8.47E-04	3	178042453	TBL1XR1	Flanking_3UTR
rs2273508	5.48E-04	8.50E-04	6	90034567	GABRR2	Intron
rs7664958	5.50E-04	8.52E-04	4	172506527	AADAT	Flanking_5UTR
rs11176241	5.52E-04	8.55E-04	12	65194084	HELB	Flanking_3UTR
rs2294622	5.53E-04	8.56E-04	16	1536260	C16orf30	Intron
rs2004375	5.53E-04	8.58E-04	8	130071912	CCDC26	Flanking_3UTR
rs1872901	5.57E-04	8.63E-04	11	103294671	PDGFD	Intron
rs7205853	5.59E-04	8.66E-04	16	10435114	ATF7IP2	Intron
	5.60E-04	8.67E-04	14	31530235	C14orf128	Flanking_3UTR

TABLE E1. (Continued)

SNP	UNADJ P value	GC-ADJ P value	Chr	Coordinate	Gene	Location
rs2061342	5.67E-04	8.77E-04	17	34659183	FBXL20	Flanking_3UTR
rs7310659	5.75E-04	8.89E-04	12	14201016	GRIN2B	Flanking_5UTR
rs3861866	5.76E-04	8.89E-04	9	127060695	GAPVD1	Flanking_5UTR
rs6451870	5.77E-04	8.91E-04	5	20686228	CDH18	Flanking_5UTR
rs4692346	5.77E-04	8.92E-04	4	25681683	KIAA0746	Flanking_5UTR
rs10995190	5.79E-04	8.95E-04	10	63948688	ZNF365	Intron
rs13285154	5.82E-04	8.98E-04	9	31495016	ACO1	Flanking_5UTR
rs1894814	5.83E-04	9.00E-04	12	8880044	A2ML1	Intron
rs10819043	5.83E-04	9.01E-04	9	127077066	GAPVD1	Intron
rs10235248	5.92E-04	9.13E-04	7	26470884	SNX10	Flanking_3UTR
rs948445	5.92E-04	9.13E-04	11	67171068	ACY3	Coding
rs11029745	5.93E-04	9.14E-04	11	26916960	LOC387758	Flanking_5UTR
rs4074186	5.99E-04	9.24E-04	11	124453249	SLC37A2	Intron
rs7868264	6.00E-04	9.24E-04	9	137990431	UBADC1	Intron
rs4743641	6.00E-04	9.24E-04	9	105107354	CYLC2	Flanking_3UTR
rs1038335	6.02E-04	9.28E-04	6	2577107	C6orf195	Intron
rs2268084	6.03E-04	9.30E-04	20	32095049	RALY	Intron
rs319920	6.08E-04	9.37E-04	6	64562211	PHF3	Flanking_3UTR
rs330181	6.09E-04	9.37E-04	5	119059458	LOC340069	Flanking_3UTR
rs7432941	6.10E-04	9.39E-04	3	70345767	MITF	Flanking_3UTR
rs632374	6.10E-04	9.39E-04	11	96331679	JRKL	Flanking_3UTR
rs8137110	6.12E-04	9.42E-04	22	41141106	NFAM1	Intron
rs1696839	6.17E-04	9.49E-04	10	123499677	ATE1	Intron
rs9268832	6.20E-04	9.53E-04	6	32535767	HLA-DRA	Flanking_3UTR
rs1378624	6.20E-04	9.54E-04	2	196753322	STK17B	Flanking_5UTR
rs1529756	6.23E-04	9.58E-04	3	12976642	IQSEC1	Intron
rs7756268	6.30E-04	9.68E-04	6	51660261	PKHD1	Intron
rs2074565	6.32E-04	9.71E-04	14	68013900	RAD51L1	Intron
rs7553424	6.37E-04	9.79E-04	1	18232488	IGSF21	Flanking_5UTR
rs4075387	6.38E-04	9.80E-04	15	99297554	ALDH1A3	Flanking_3UTR
rs8018430	6.42E-04	9.85E-04	14	77727425	NRXN3	Flanking_5UTR
rs10943755	6.45E-04	9.90E-04	6	81653169	BCKDHB	Flanking_3UTR
rs2941503	6.46E-04	9.91E-04	17	35082271	PERLD1	3UTR
rs4837016	6.49E-04	9.96E-04	9	127181630	GAPVD1	Flanking_3UTR
rs13077437	6.50E-04	9.96E-04	3	24457322	THRB	Intron
rs1955850	6.50E-04	9.97E-04	14	26193254	NOVA1	Flanking_5UTR

UTR, Untranslated region.

TABLE E2. Association results of 37 imputed SNPs in RAD50

SNP	Position	P value	Location
rs12652920	131913139	1.36E-06	5' Upstream
rs2057687	131915144	1.46E-02	5' Upstream
rs2706338	131923748	9.98E-07	Intron 2
rs2244012	131929124	3.04E-07	Intron 2
rs2299015	131929396	9.98E-07	Intron 2
rs2706347	131933016	9.98E-07	Intron 2
rs2706348	131933709	9.98E-07	Intron 2
rs17166050	131943112	9.98E-07	Intron 4, near RHS3
rs2522403	131943216	9.98E-07	Intron 4, near RHS3
rs2246176	131945249	9.98E-07	Intron 5
rs2252775	131946343	9.98E-07	Intron 5
rs10463893	131955938	9.98E-07	Intron 11
rs2897443	131957493	2.74E-06	Intron 11
rs17622991	131960652	1.34E-06	Intron 13
rs2706370	131960915	1.65E-06	Intron 13
rs2706372	131963376	9.98E-07	Intron 13
rs6884762	131966629	9.23E-02	Intron 13
rs12187537	131967803	9.79E-07	Intron 15
rs2522394	131972028	9.79E-07	Intron 16
rs10520114	131976790	9.79E-07	Intron 19, near RHS4, LCR
rs2301713	131979895	1.49E-06	Intron 20, near RHS4, LCR
rs6596086	131980121	1.49E-06	Intron 20, near RHS4, LCR
rs2106984	131980965	1.49E-06	Intron 20, near RHS4, LCR
rs7449456	131981326	1.49E-06	Intron 20, near RHS4, LCR
rs17772583	131981409	2.28E-01	Intron 20, near RHS4, LCR
rs3798135	131993008	1.49E-06	Intron 21, on RHS5/LCR-O
s3798134	131993078	1.49E-06	Intron 21, on RHS5/LCR-C
rs6596087	131996508	1.49E-06	Intron 21, LCR
rs6871536	131997773	9.03E-07	Intron 21, LCR
rs2237060	131998784	1.12E-01	Intron 21, near RHS6/ LCR-A
rs12653750	131999801	1.49E-06	Intron 21, on RHS6/LCR-A
rs2040703	132000157	1.34E-06	Intron 21, near RHS6/ LCR-A
rs2040704	132001076	1.33E-06	Intron 22, on RHS6/LCR-E
rs2074369	132001562	8.36E-07	Intron 22, LCR
s7737470	132001962	1.94E-06	Intron 23, LCR
s2240032	132005026	6.68E-06	Intron 24, on RHS7/LCR-C
rs2158177	132011957	1.48E-04	3' Downstream

Boldface SNPs were genotyped SNPs; others were imputed.

TABLE E3. Forty-one association results of imputed SNPs in HLA-DR/DQ region ($P \le 1.0E-04$)

SNP	Position	P value	Gene	Location
rs9268542	32492699	8.55E-05	BTNL2	Flanking_5UTR
rs9268544	32493431	8.55E-05	BTNL2	Flanking_5UTR
rs9268556	32494942	8.55E-05	BTNL2	Flanking_5UTR
rs9268644	32516022	6.55E-05	HLA-DRA	Intron
rs6926374	32517283	3.23E-05	HLA-DRA	Intron
rs9268657	32517634	6.54E-05	HLA-DRA	Intron
rs2239804	32519501	2.80E-05	HLA-DRA	Intron
rs2239803	32519811	2.80E-05	HLA-DRA	Intron
rs9268831	32535726	2.43E-05	HLA-DRA	Flanking_3UTR
rs9268853	32537621	7.30E-05	HLA-DRA	Flanking_3UTR
rs9268858	32537736	7.30E-05	HLA-DRA	Flanking_3UTR
rs2395185	32541145	1.00E-04	HLA-DRA	Flanking_3UTR
rs9405040	32547371	8.77E-05	HLA-DRA	Flanking_3UTR
rs9286790	32547806	8.77E-05	HLA-DRA	Flanking_3UTR
rs2516049	32678378	2.93E-05	HLA-DRB1	Flanking_5UTR
rs522308	32689900	4.34E-05	HLA-DRB1	Flanking_5UTR
rs3828800	32744041	4.34E-05	HLA-DQB1	Flanking_5UTR
rs9275184	32762692	1.26E-05	HLA-DQB1	Flanking_5UTR
rs9275207	32765688	5.10E-06	HLA-DQB1	Flanking_5UTR
rs9275221	32767077	5.10E-06	HLA-DQB1	Flanking_5UTR
rs9275293	32771286	5.10E-06	HLA-DQB1	Flanking_5UTR
rs5000634	32771542	9.76E-05	HLA-DQB1	Flanking_5UTR
rs7745040	32772310	3.23E-05	HLA-DQB1	Flanking_5UTR
rs9275307	32772968	2.68E-06	HLA-DQB1	Flanking_5UTR
rs9275310	32773297	4.72E-06	HLA-DQB1	Flanking_5UTR
rs9275311	32773618	4.72E-06	HLA-DQB1	Flanking_5UTR
rs9275312	32773706	1.13E-05	HLA-DQB1	Flanking_5UTR
rs9275313	32773737	5.95E-06	HLA-DQB1	Flanking_5UTR
rs9275319	32774273	1.28E-05	HLA-DQB1	Flanking_5UTR
rs9275324	32774613	4.72E-06	HLA-DQB1	Flanking_5UTR
rs9275328	32774800	1.24E-05	HLA-DQB1	Flanking_5UTR
rs9275330	32774853	1.12E-05	HLA-DQB1	Flanking_5UTR
rs9275334	32775085	2.68E-06	HLA-DQB1	Flanking_5UTR
rs9275338	32775321	1.13E-05	HLA-DQB1	Flanking_5UTR
rs9275351	32775771	2.68E-06	HLA-DQB1	Flanking_5UTR
rs9275356	32775828	2.68E-06	HLA-DQB1	Flanking_5UTR
rs9275592	32788598	2.68E-06	HLA-DQA2	Flanking_5UTR
rs7454108	32789461	2.68E-06	HLA-DQA2	Flanking_5UTR
rs3957146	32789508	2.68E-06	HLA-DQA2	Flanking_5UTR
rs3998159	32789997	1.45E-06	HLA-DQA2	Flanking_5UTR
rs9275599	32790407	2.96E-06	HLA-DQA2	Flanking_5UTR

BTNL2, Butyrophilin-like 2; *UTR*, Untranslated region. *Boldface* SNPs were genotyped SNPs; others were imputed.